Publications
Journals
A. Kokkinis, G. Zervakis, K. Siozios, M. B. Tahoori and J. Henkel, “Enabling Printed Multilayer Perceptrons Realization via Area-Aware Neural Minimization,” IEEE Transactions on Computers, vol. 74, no. 4, pp. 1461-1469, April 2025, doi: 10.1109/TC.2024.3524076.[github]
G. Zervakis, F. Frustaci, O. Spantidi, I. Anagnostopoulos, H. Amrouch and J. Henkel, “Leveraging Highly Approximated Multipliers in DNN Inference,” IEEE Access, doi: 10.1109/ACCESS.2025.3550520.
F. Afentaki, P. C. L. Duarte, G. Zervakis and M. B. Tahoori, “Reducing ADC Front-End Costs During Training of On-Sensor Printed Multilayer Perceptrons,” IEEE Embedded Systems Letters, vol. 16, no. 4, pp. 353-356, Dec. 2024, doi: 10.1109/LES.2024.3447412.[github]
K. Balaskas, A. Karatzas, C. Sad, K. Siozios, I. Anagnostopoulos, G. Zervakis, and J. Henkel, “Hardware-Aware DNN Compression via Diverse Pruning and Mixed-Precision Quantization,” IEEE Trans. Emerg. Top. Comput., pp. 1-1, 2024, doi: 10.1109/TETC.2023.3346944.
G. Armeniakos, G. Zervakis, D. Soudris, M. B. Tahoori, and J. Henkel, “Model-to-Circuit Cross-Approximation For Printed Machine Learning Classifiers,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., pp. 1-1, 2023, doi: 10.1109/TCAD.2023.3258668. [github]
G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel, “Hardware approximate techniques for deep neural network accelerators: A survey,” ACM Comput. Surv., vol. 55, no. 4, pp. 83:1–83:36, 2023, doi: 10.1145/3527156.
G. Armeniakos, G. Zervakis, D. Soudris, M. B. Tahoori, and J. Henkel, “Co-design of approximate multilayer perceptron for ultra-resource constrained printed circuits,” IEEE Trans. Computers, vol. 72, no. 9, pp. 2717–2725, 2023, doi: 10.1109/TC.2023.3251863. [github]
D. Danopoulos, G. Zervakis, K. Siozios, D. Soudris, and J. Henkel, “AdaPT: Fast emulation of approximate DNN accelerators in PyTorch,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 42, no. 6, pp. 2074–2078, 2023, doi: 10.1109/TCAD.2022.3212645. [github]
O. Spantidi, G. Zervakis, S. Alsalamin, I. Roman-Ballesteros, J. Henkel, H. Amrouch, and I. Anagnostopoulos, “Targeting DNN inference via efficient utilization of heterogeneous precision DNN accelerators,” IEEE Trans. Emerg. Top. Comput., vol. 11, no. 1, pp. 112–125, 2023, doi: 10.1109/TETC.2022.3178730.
S. Salamin, G. Zervakis, F. Klemme, H. Kattan, Y. S. Chauhan, J. Henkel, and H. Amrouch, “Impact of NCFET technology on eliminating the cooling cost and boosting the efficiency of google TPU,” IEEE Trans. Computers, vol. 71, no. 4, pp. 906–918, 2022, doi: 10.1109/TC.2021.3065454.
G. Zervakis, I. Anagnostopoulos, S. Salamin, O. Spantidi, I. Roman-Ballesteros, J. Henkel, and H. Amrouch, “Thermal-aware design for approximate DNN accelerators,” IEEE Trans. Computers, vol. 71, no. 10, pp. 2687–2697, 2022, doi: 10.1109/TC.2022.3141054.
O. Spantidi, G. Zervakis, I. Anagnostopoulos, and J. Henkel, “Energy-efficient DNN inference on approximate accelerators through formal property exploration,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 41, no. 11, pp. 3838–3849, 2022, doi: 10.1109/TCAD.2022.3197522.
K. Balaskas, F. Klemme, G. Zervakis, K. Siozios, H. Amrouch, and J. Henkel, “Variability-aware approximate circuit synthesis via genetic optimization,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 69, no. 10, pp. 4141–4153, 2022, doi: 10.1109/TCSI.2022.3183858.
N. Irtija, I. Anagnostopoulos, G. Zervakis, E.-E. Tsiropoulou, H. Amrouch, and J. Henkel, “Energy efficient edge computing enabled by satisfaction games and approximate computing,” IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp. 281–294, 2022, doi: 10.1109/TGCN.2021.3122911.
G. Zervakis, I. Anagnostopoulos, S. Salamin, Y. S. Chauhan, J. Henkel, and H. Amrouch, “Impact of NCFET on neural network accelerators,” IEEE Access, vol. 9, pp. 43748–43758, 2021, doi: 10.1109/ACCESS.2021.3066335.
G. Paim, G. Zervakis, G. Pahwa, Y. S. Chauhan, E. A. C. da Costa, S. Bampi, J. Henkel, and H. Amrouch, “On the resiliency of NCFET circuits against voltage over-scaling,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 68, no. 4, pp. 1481–1492, 2021, doi: 10.1109/TCSI.2021.3058451.
S. Salamin, G. Zervakis, Y. S. Chauhan, J. Henkel, and H. Amrouch, “PROTON: Post-synthesis ferroelectric thickness optimization for NCFET circuits,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 68, no. 10, pp. 4299–4309, 2021, doi: 10.1109/TCSI.2021.3103860.
K. Balaskas, G. Zervakis, H. Amrouch, J. Henkel, and K. Siozios, “Automated design approximation to overcome circuit aging,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 68, no. 11, pp. 4710–4721, 2021, doi: 10.1109/TCSI.2021.3106149.
G. Zervakis, H. Amrouch, and J. Henkel, “Design automation of approximate circuits with runtime reconfigurable accuracy,” IEEE Access, vol. 8, pp. 53522–53538, 2020, doi: 10.1109/ACCESS.2020.2981395.
H. Amrouch, G. Zervakis, S. Salamin, H. Kattan, I. Anagnostopoulos, and J. Henkel, “NPU thermal management,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 39, no. 11, pp. 3842–3855, 2020, doi: 10.1109/TCAD.2020.3012753.
Z.-G. Tasoulas, G. Zervakis, I. Anagnostopoulos, H. Amrouch, and J. Henkel, “Weight-oriented approximation for energy-efficient neural network inference accelerators,” IEEE Trans. Circuits Syst., vol. 67–I, no. 12, pp. 4670–4683, 2020, doi: 10.1109/TCSI.2020.3019460.
G. Zervakis, S. Xydis, D. Soudris, and K. Z. Pekmestzi, “Multi-level approximate accelerator synthesis under voltage island constraints,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66–II, no. 4, pp. 607–611, 2019, doi: 10.1109/TCSII.2018.2869025.
G. Zervakis, K. Koliogeorgi, D. Anagnostos, N. Zompakis, and K. Siozios, “VADER: Voltage-driven netlist pruning for cross-layer approximate arithmetic circuits,” IEEE Trans. Very Large Scale Integr. Syst., vol. 27, no. 6, pp. 1460–1464, 2019, doi: 10.1109/TVLSI.2019.2900160.
V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Z. Pekmestzi, “Walking through the energy-error pareto frontier of approximate multipliers,” IEEE Micro, vol. 38, no. 4, pp. 40–49, 2018, doi: 10.1109/MM.2018.043191124.
V. Leon, G. Zervakis, D. Soudris, and K. Z. Pekmestzi, “Approximate hybrid high radix encoding for energy-efficient inexact multipliers,” IEEE Trans. Very Large Scale Integr. Syst., vol. 26, no. 3, pp. 421–430, 2018, doi: 10.1109/TVLSI.2017.2767858.
G. Zervakis, F. Ntouskas, S. Xydis, D. Soudris, and K. Z. Pekmestzi, “VOSsim: A framework for enabling fast voltage overscaling simulation for approximate computing circuits,” IEEE Trans. Very Large Scale Integr. Syst., vol. 26, no. 6, pp. 1204–1208, 2018, doi: 10.1109/TVLSI.2018.2803202.
K. Tsoumanis, N. Axelos, N. Moschopoulos, G. Zervakis, and K. Z. Pekmestzi, “Pre-encoded multipliers based on non-redundant radix-4 signed-digit encoding,” IEEE Trans. Computers, vol. 65, no. 2, pp. 670–676, 2016, doi: 10.1109/TC.2015.2428691.
K. Tsoumanis, S. Xydis, G. Zervakis, and K. Z. Pekmestzi, “Flexible DSP accelerator architecture exploiting carry-save arithmetic,” IEEE Trans. Very Large Scale Integr. Syst., vol. 24, no. 1, pp. 368–372, 2016, doi: 10.1109/TVLSI.2015.2390974.
G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Z. Pekmestzi, “Design-efficient approximate multiplication circuits through partial product perforation,” IEEE Trans. Very Large Scale Integr. Syst., vol. 24, no. 10, pp. 3105–3117, 2016, doi: 10.1109/TVLSI.2016.2535398.
Conferences
G. Saglam, F. Afentaki, G. Zervakis, and M. Tahoori, "Sequential Printed Multilayer Perceptron Circuits for Super-TinyML Multi-Sensory Applications," in Asia and South Pacific Design Automation Conference (ASPDAC '25), Tokyo, Japan, 2025, pp. 30-35, doi: 10.1145/3658617.3697634.
P. C. Lozano Duarte, F. Afentaki, G. Zervakis, and Mehdi Tahoori, "Design and In-training Optimization of Binary Search ADC for Flexible Classifiers," in Asia and South Pacific Design Automation Conference (ASPDAC '25), Tokyo, Japan, 2025, pp. 754 - 760, doi: 10.1145/3658617.3697715.
V. Mrazek, A. Kokkinis, P. Papanikolaou, Z. Vasicek, K. Siozios, G. Tzimpragos, M. Tahoori, and G. Zervakis, "Evolutionary Approximation of Ternary Neurons for On-sensor Printed Neural Networks," in International Conference on Computer Aided Design (ICCAD'24), New Jersey, NY, USA, 2024, pp. 1-6, doi: 10.1145/3676536.3676728. [github]
J. Volk, P. Papanikolaou, G. Zervakis, G. Tzimpragos, "Synthesis of Resource-Efficient Superconducting Circuits with Clock-Free Alternating Logic," in Design Automation Conference (DAC '24), San Fransisco, CA, USA, 2024, pp. 1-6, doi: 10.1145/3649329.3657376.
D. Masouros, A. Ferikoglou, G. Zervakis, S. Xydis, D. Soudris, "Late Breaking Results: Language-level QoR modeling for High-Level Synthesis," in Design Automation Conference (DAC '24), New York, NY, USA, 2024, pp. 1-2, doi: 10.1145/3649329.3663500.
P. Pal, F. Afentaki, H. Zhao, G. Saglam, M. Hefenbrock, G. Zervakis, M. Beigl, M. B. Tahoori, "Fault Sensitivity Analysis of Printed Bespoke Multilayer Perceptron Classifiers," in IEEE European Test Symposium (ETS), The Hague, Netherlands, 2024, pp. 1-6, doi: 10.1109/ETS61313.2024.10567964. [github]
F. Afentaki, M. Hefenbrock, G. Zervakis and M. B. Tahoori, "Embedding Hardware Approximations in Discrete Genetic-Based Training for Printed MLPs," in Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 2024, pp. 1-6, doi: 10.23919/DATE58400.2024.10546879. [github]
G. Armeniakos, P. L. Duarte, P. Pal, G. Zervakis, M. B. Tahoori and D. Soudris, "On-Sensor Printed Machine Learning Classification via Bespoke ADC and Decision Tree Co-Design," in Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 2024, pp. 1-6, doi: 10.23919/DATE58400.2024.10546585. [github]
F. Afentaki, G. Saglam, A. Kokkinis, K. Siozios, G. Zervakis and M. B. Tahoori, "Bespoke Approximation of Multiplication-Accumulation and Activation Targeting Printed Multilayer Perceptrons," in IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Francisco, CA, USA, 2023, pp. 1-9, doi: 10.1109/ICCAD57390.2023.10323613. [github]
A. Kokkinis, G. Zervakis, K. Siozios, M. B. Tahoori, and J. Henkel, “Hardware-aware automated neural minimization for printed multilayer perceptrons,” in Design, automation & test in europe conference & exhibition, DATE 2023, antwerp, belgium, april 17-19, 2023, IEEE, 2023, pp. 1–2. doi: 10.23919/DATE56975.2023.10137161.
J. Henkel, H. Li, A. Raghunathan, M. B. Tahoori, S. Venkataramani, X. Yang, and G. Zervakis, “Approximate computing and the efficient machine learning expedition,” in Proceedings of the 41st IEEE/ACM international conference on computer-aided design, ICCAD 2022, san diego, california, USA, 30 october 2022 - 3 november 2022, pp. 80:1–80:9. doi: 10.1145/3508352.3561105.
G. Armeniakos, G. Zervakis, D. Soudris, M. B. Tahoori, and J. Henkel, “Cross-layer approximation for printed machine learning circuits,” in 2022 design, automation & test in europe conference & exhibition, DATE 2022, antwerp, belgium, march 14-23, 2022, pp. 190–195. doi: 10.23919/DATE54114.2022.9774689. Best paper nomination.
[github]
[github]
K. Balaskas, G. Zervakis, K. Siozios, M. B. Tahoori, and J. Henkel, “Approximate decision trees for machine learning classification on tiny printed circuits,” in 23rd international symposium on quality electronic design, ISQED 2022, santa clara, CA, USA, april 6-7, 2022, IEEE, 2022, pp. 1–6. doi: 10.1109/ISQED54688.2022.9806213.
G. Zervakis, H. Saadat, H. Amrouch, A. Gerstlauer, S. Parameswaran, and J. Henkel, “Approximate computing for ML: State-of-the-art, challenges and visions,” in ASPDAC ’21: 26th asia and south pacific design automation conference, tokyo, japan, january 18-21, 2021, ACM, 2021, pp. 189–196. doi: 10.1145/3394885.3431632.
G. Zervakis, O. Spantidi, I. Anagnostopoulos, H. Amrouch, and J. Henkel, “Control variate approximation for DNN accelerators,” in 58th ACM/IEEE design automation conference, DAC 2021, san francisco, CA, USA, december 5-9, 2021, IEEE, 2021, pp. 481–486. doi: 10.1109/DAC18074.2021.9586092.
M. Yayla, K.-H. Chen, G. Zervakis, J. Henkel, J.-J. Chen, and H. Amrouch, “FeFET and NCFET for future neural networks: Visions and opportunities,” in Design, automation & test in europe conference & exhibition, DATE 2021, grenoble, france, february 1-5, 2021, IEEE, 2021, pp. 300–305. doi: 10.23919/DATE51398.2021.9473978.
S. Salamin, G. Zervakis, O. Spantidi, I. Anagnostopoulos, J. Henkel, and H. Amrouch, “Reliability-aware quantization for anti-aging NPUs,” in Design, automation & test in europe conference & exhibition, DATE 2021, grenoble, france, february 1-5, 2021, IEEE, 2021, pp. 1460–1465. doi: 10.23919/DATE51398.2021.9474094.
O. Spantidi, G. Zervakis, I. Anagnostopoulos, H. Amrouch, and J. Henkel, “Positive/negative approximate multipliers for DNN accelerators,” in IEEE/ACM international conference on computer aided design, ICCAD 2021, munich, germany, november 1-4, 2021, IEEE, 2021, pp. 1–9. doi: 10.1109/ICCAD51958.2021.9643491.
N. Zompakis, D. Anagnostos, K. Koliogeorgi, G. Zervakis, and K. Siozios, “A design flow framework for fully-connected neural networks rapid prototyping,” in Proceedings of the international conference on omni-layer intelligent systems, COINS 2019, crete, greece, may 5-7, 2019, pp. 44–49. doi: 10.1145/3312614.3312628.
D. Masouros, K. Koliogeorgi, G. Zervakis, A. Kosvyra, A. Chytas, S. Xydis, I. Chouvarda, and D. Soudris, “Co-design implications of cost-effective on-demand acceleration for cloud healthcare analytics: The AEGLE approach,” in Design, automation & test in europe conference & exhibition, DATE 2019, florence, italy, march 25-29, 2019, J. Teich and F. Fummi, Eds., IEEE, 2019, pp. 622–625. doi: 10.23919/DATE.2019.8714934.
K. Koliogeorgi, G. Zervakis, D. Anagnostos, N. Zompakis, and K. Siozios, “Optimizing SVM classifier through approximate and high level synthesis techniques,” in 8th international conference on modern circuits and systems technologies, MOCAST 2019, thessaloniki, greece, may 13-15, 2019, IEEE, 2019, pp. 1–4. doi: 10.1109/MOCAST.2019.8742064.
K. Koliogeorgi, D. Masouros, G. Zervakis, S. Xydis, T. Becker, G. Gaydadjiev, and D. Soudris, “AEGLE’s cloud infrastructure for resource monitoring and containerized accelerated analytics,” in 2017 IEEE computer society annual symposium on VLSI, ISVLSI 2017, bochum, germany, july 3-5, 2017, pp. 362–367. doi: 10.1109/ISVLSI.2017.70.
G. Zervakis, S. Xydis, and D. Soudris, “Performance-power exploration of software-defined big data analytics: The AEGLE cloud backend,” in International conference on embedded computer systems: Architectures, modeling and simulation, SAMOS 2016, agios konstantinos, samos island, greece, july 17-21, 2016, pp. 312–319. doi: 10.1109/SAMOS.2016.7818364.
G. Zervakis, K. Tsoumanis, S. Xydis, N. Axelos, and K. Z. Pekmestzi, “Approximate multiplier architectures through partial product perforation: Power-area tradeoffs analysis,” in Proceedings of the 25th edition on great lakes symposium on VLSI, GLVLSI 2015, pittsburgh, PA, USA, may 20 - 22, 2015, pp. 229–232. doi: 10.1145/2742060.2742109.
G. Zervakis, S. Xydis, K. Tsoumanis, D. Soudris, and K. Z. Pekmestzi, “Hybrid approximate multiplier architectures for improved power-accuracy trade-offs,” in IEEE/ACM international symposium on low power electronics and design, ISLPED 2015, rome, italy, july 22-24, 2015, IEEE, 2015, pp. 79–84. doi: 10.1109/ISLPED.2015.7273494.
N. Eftaxiopoulos, N. Axelos, G. Zervakis, K. Tsoumanis, and K. Z. Pekmestzi, “Delta DICE: A double node upset resilient latch,” in IEEE 58th international midwest symposium on circuits and systems, MWSCAS 2015, fort collins, CO, USA, august 2-5, 2015, IEEE, 2015, pp. 1–4. doi: 10.1109/MWSCAS.2015.7282145.
G. Zervakis, N. Eftaxiopoulos-Sarris, K. Tsoumanis, N. Axelos, and K. Z. Pekmestzi, “A segmentation-based BISR scheme,” in 19th asia and south pacific design automation conference, ASP-DAC 2014, singapore, january 20-23, 2014, IEEE, 2014, pp. 652–657. doi: 10.1109/ASPDAC.2014.6742965.
N. Eftaxiopoulos-Sarris, G. Zervakis, K. Z. Pekmestzi, and C. Efstathiou, “High performance MAC designs,” in 9th international design and test symposium, IDT 2014, algeries, algeria, december 16-18, 2014, IEEE, 2014, pp. 30–35. doi: 10.1109/IDT.2014.7038582.
N. Eftaxiopoulos-Sarris, N. Axelos, G. Zervakis, K. Tsoumanis, and K. Z. Pekmestzi, “An independent dual gate SOI FinFET soft-error resilient memory cell,” in 9th international design and test symposium, IDT 2014, algeries, algeria, december 16-18, 2014, IEEE, 2014, pp. 39–44. doi: 10.1109/IDT.2014.7038584.
G. Zervakis, N. Eftaxiopoulos-Sarris, K. Tsoumanis, N. Axelos, and K. Z. Pekmestzi, “A high radix montgomery multiplier with concurrent error detection,” in 9th international design and test symposium, IDT 2014, algeries, algeria, december 16-18, 2014, IEEE, 2014, pp. 199–204. doi: 10.1109/IDT.2014.7038613.
N. Axelos, N. Eftaxiopoulos-Sarris, G. Zervakis, K. Tsoumanis, and K. Z. Pekmestzi, “FF-DICE: An 8T soft-error tolerant cell using independent dual gate SOI FinFETs,” in 2014 IEEE 20th international on-line testing symposium, IOLTS 2014, platja d’aro, girona, spain, july 7-9, 2014, IEEE, 2014, pp. 200–201. doi: 10.1109/IOLTS.2014.6873696.
N. Eftaxiopoulos-Sarris, G. Zervakis, K. Tsoumanis, and K. Z. Pekmestzi, “A radiation tolerant and self-repair memory cell,” in 2013 IEEE 19th international on-line testing symposium (IOLTS), chania, crete, greece, july 8-10, 2013, IEEE, 2013, pp. 210–215. doi: 10.1109/IOLTS.2013.6604081.
Books/Book Chapters
G. Zervakis, M. B. Tahoori, and J. Henkel, “Hardware–Software Co-design for Ultra-Resource-Constrained Embedded Machine Learning Inference: A Printed Electronics Use Case,” in Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing, S. Pasricha and M. Shafique, Eds., Springer, Cham., 2024, pp. 201-224. doi: 10.1007/978-3-031-39932-9_8.
G. Zervakis, I. Anagnostopoulos, H. Amrouch, and J. Henkel, “Enabling efficient inference of convolutional neural networks via approximation,” in Approximate computing, W. Liu and F. Lombardi, Eds., Springer International Publishing, 2022, pp. 429–450. doi: 10.1007/978-3-030-98347-5_17.
C. Kachris, E. Koromilas, I. Stamelos, G. Zervakis, S. Xydis, and D. Soudris, “EnergyEfficient Acceleration of Spark Machine Learning Applications on FPGAs,” in Hardware Accelerators in Data Centers, C. Kachris, B. Falsafi, and D. Soudris, Eds., Springer International Publishing, 2019, pp. 87–107. doi: 10.1007/978-3-319-92792-3_5.
G. Zervakis, “On Accelerating Data Analytics: An Introduction to the Approximate Computing Technique,” in Hardware Accelerators in Data Centers, K. Siozios, D. Anagnostos, D. Soudris, and E. Kosmatopoulosm Eds., Springer International Publishing, 2018, pp. 163–180. doi: 10.1007/978-3-030-03640-9_9.